Hadoop二次排序:
- import java.io.IOException;
- import org.apache.Hadoop.conf.Configuration;
- import org.apache.Hadoop.fs.Path;
- import org.apache.Hadoop.io.IntWritable;
- import org.apache.Hadoop.io.LongWritable;
- import org.apache.Hadoop.io.Text;
- import org.apache.Hadoop.io.WritableComparable;
- import org.apache.Hadoop.io.WritableComparator;
- import org.apache.Hadoop.mapreduce.Job;
- import org.apache.Hadoop.mapreduce.Mapper;
- import org.apache.Hadoop.mapreduce.Reducer;
- import org.apache.Hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.Hadoop.mapreduce.lib.input.TextInputFormat;
- import org.apache.Hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.Hadoop.mapreduce.lib.output.TextOutputFormat;
- import org.apache.Hadoop.mapreduce.lib.partition.HashPartitioner;
- /**
- * @author 吕桂强
- * @email larry.lv.word@gmail.com
- * @version 创建时间:2012-5-21 下午5:06:57
- */
- public class SecondarySort {
- // map阶段的最后会对整个map的List进行分区,每个分区映射到一个reducer
- public static class FirstPartitioner extends HashPartitioner<Text, IntWritable> {
- @Override
- public int getPartition(Text key, IntWritable value, int numPartitions) {
- return (key.toString().split(":")[0].hashCode() & Integer.MAX_VALUE) % numPartitions;
- }
- }
-
- // 每个分区内又调用job.setSortComparatorClass或者key的比较函数进行排序
- public static class SortComparator extends WritableComparator {
- protected SortComparator() {
- super(Text.class, true);
- }
-
- @SuppressWarnings("rawtypes")
- @Override
- public int compare(WritableComparable w1, WritableComparable w2) {
- return -w1.toString().split(":")[0].compareTo(w2.toString().split(":")[0]);
- }
- }
-
- // 只要这个比较器比较的两个key相同,他们就属于同一个组.
- // 它们的value放在一个value迭代器,而这个迭代器的key使用属于同一个组的所有key的第一个key
- public static class GroupingComparator extends WritableComparator {
- protected GroupingComparator() {
- super(Text.class, true);
- }
- @SuppressWarnings("rawtypes")
- @Override
- public int compare(WritableComparable w1, WritableComparable w2) {
- return w1.toString().split(":")[0].compareTo(w2.toString().split(":")[0]);
- }
- }
-
- // 自定义map
- public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
- private final IntWritable intvalue = new IntWritable();
-
- public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
- context.write(value, intvalue);
- }
- }
-
- // 自定义reduce
- public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
- public void setup(Context context) {
- context.getConfiguration();
- System.out.println("reduce");
- }
-
- public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
- context.write(new Text("-------------------------"), new IntWritable(1));
- for (IntWritable val : values) {
- // 虽然分在同一个组里,但是循环里每次输出的key都不相同(key看上去是个Text但实际也是一个list)
- context.write(key, val);
- }
- }
- }
-
- public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
- Configuration conf = new Configuration();
- Job job = new Job(conf, "secondarysort");
- job.setJarByClass(SecondarySort.class);
- job.setMapperClass(Map.class);
- // job.setCombinerClass(Reduce.class);
- job.setReducerClass(Reduce.class);
- // 分区函数
- job.setPartitionerClass(FirstPartitioner.class);
- job.setSortComparatorClass(SortComparator.class);
- // 分组函数
- job.setGroupingComparatorClass(GroupingComparator.class);
-
- job.setMapOutputKeyClass(Text.class);
- job.setMapOutputValueClass(IntWritable.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(IntWritable.class);
-
- job.setInputFormatClass(TextInputFormat.class);
- job.setOutputFormatClass(TextOutputFormat.class);
-
- FileInputFormat.setInputPaths(job, new Path("/larry/wc/input"));
- FileOutputFormat.setOutputPath(job, new Path("/larry/wc/output"));
-
- job.setNumReduceTasks(1);
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- }
- }
输入:
1:3
1:2
1:1
2:1
2:2
2:3
3:1
3:2
3:3
输出:(Text类型的key每输出一次都会改变,所以其实也是个Iterable)
____________________ 1
3:1 0
3:2 0
3:3 0
____________________ 1
2:1 0
2:2 0
2:3 0
____________________ 1
1:3 0
1:2 0
1:1 0