[分享] 目前的人工智能缺失了一个关键环节_AI.人工智能讨论区_Weblogic技术|Tuxedo技术|中间件技术|Oracle论坛|JAVA论坛|Linux/Unix技术|hadoop论坛_联动北方技术论坛  
网站首页 | 关于我们 | 服务中心 | 经验交流 | 公司荣誉 | 成功案例 | 合作伙伴 | 联系我们 |
联动北方-国内领先的云技术服务提供商
»  游客             当前位置:  论坛首页 »  自由讨论区 »  AI.人工智能讨论区 »
总帖数
3
每页帖数
101/1页1
返回列表
0
发起投票  发起投票 发新帖子
查看: 3133 | 回复: 2   主题: [分享] 目前的人工智能缺失了一个关键环节        下一篇 
    本主题由 hui.chen 于 2017-4-14 9:53:06 移动
lalaful
版主
等级:少校
经验:1383
发帖:31
精华:0
注册:2015-9-17
状态:离线
发送短消息息给lalaful 加好友    发送短消息息给lalaful 发消息
发表于: IP:您无权察看 2016-3-1 14:20:30 | [全部帖] [楼主帖] 楼主

2012年,谷歌神秘机构X实验室里的一项令人惊奇的项目被世界所知晓。这些拥有三百万个神经元的模拟神经网络在没有人工帮助的情况下,只依靠从YouTube里获得的图片就识别出了图片中的猫和人物。


项目的成员组建了一个新的研究小组,这就是公司搜索部门下面的「谷歌大脑」( Google Brain)。他们和其他的研究者一起很快向世界证明了一个拥有几十年历史的发明——人工神经网络将图像识别和语音识别的精确度提升到了一个前所未有的新高度。深度学习的成功促使谷歌和其他公司开始大举投资人工智能,甚至使一些专家开始宣称「我们应该为出现比人类更加聪明的软件做好准备。」


然而,谷歌这个「猫检测器」在某种程度上是一条死胡同。近期深度学习的成功是建立在那些需要人工帮助其学习的软件之上的,这极大限制了人工智能的上升空间。

智能图片1.webp.jpg

谷歌的实验使用了一种非监督式学习的方法,软件被输入未经加工的原始数据,然后必须在没有人工帮助的情况下计算出结果。尽管它可以学会识别猫、人脸和其他物体,但它的精确度还没有达到可以使用的水平。深度学习研究和基于此的产品开发的爆发都是基于监督式学习,数据需要人工打好标签之后再提供给软件——例如,我们要给图片中的各个物体都标上名称。


事实证明,这对于解决一些问题非常有效,比如说识别图片中的物体、过滤垃圾邮件,甚至是为用户回复短信提供建议(这是谷歌去年上线的一项功能)。但如果需要软件更好地去理解世界,那可能就需要非监督式学习了,Jeff Dean如是说,他现在领导着谷歌大脑项目,也曾经在Google X 的「猫检测器」项目中工作过。


「我非常确信我们需要它,」Dean 说,「当你有正确的数据集时,监督式学习会表现得很好,但终极的非监督式学习会成为构建真正的智能系统中重要的一环——如果你观察人类的学习方式,你就会发现全部都是非监督式的。」


一个绝好的例子就是,婴儿的学习方式为成年时期的智能打下了基础。比如说我们知道,当一个物体移到视线之外时依然存在,或者没有支撑就会掉到地上,这些事情是我们通过观察世界而学习到的,并不需要明确的指引。和动物一样,如果机器人想要探索真实世界,那它们就需要这种常识。这也能巩固更加抽象的任务,例如对语言的理解。


Facebook人工智能研究组主管Yann LeCun说,如果人工智能要满足人们更大的野心,就必须弄清楚软件如何才能完成那些对人类婴儿来说十分容易的事情。他说:「我们都知道,最终的答案就是非监督式学习。解决了非监督式学习的问题,将把我们带向更高的级别。」


尽管他们还没有得到最终的答案,但Facebook、Google等公司以及学术界的研究者正在对某些有限的非监督式学习进行实验。


其中一个研究分支的目的是创造出一个人工神经网络,让它消化吸收视频和图像,并用它们获得的关于世界的知识产生出新的图像——这意味着它们已经形成了关于世界是如何运行的内部表征。对世界作出精准的预测是人类智能中一个非常重要的基本特征。

Facebook的研究者建造了一个称为 EyeScream的软件。这个软件可以根据提示(例如「教堂」或「飞机」)生成可识别的图像。他们也在研究对视频做出预测的软件。Google旗下DeepMind的研究者已经开发了一种软件,给它一些部分遮掩的图片,它能用十分真实的图像来进行填补。


DeepMind还在研究一种完全的非监督式学习,叫做强化学习(reinforcement learning)。在强化学习中,软件被训练来接收关于自我表现的自动反馈——比如说,这些反馈会来自电脑游戏的得分系统。还有一些不使用深度学习的研究者则证明,软件可以从单个例子中学会识别手写字体(见《人工智能终于能像人类一样学习》)。


但是迄今为止,这些尝试都尚未揭示出一条能让非监督式学习达到人类水平的路径,或者说,软件尚不能仅通过经历或实验就学会与真实世界有关的复杂东西。百度硅谷AI实验室主任Adam Coates说:「目前,我们似乎缺失了某个关键的思想。」


Coates说,随着搜寻的继续,监督式学习依然还能带给我们很多东西:互联网公司可以获得大量数据,包括人们做了什么事和关心什么事,可以用这些原料来建造比今天的产品更加有用的语音交互和个人助理等产品。他说:「在不远的未来,你还可以用标记数据来做很多事。」大公司在这方面花了许多金钱,让合约商为他们的机器学习系统标记数据。


Facebook的LeCun相信,研究者不会永远依靠标记数据。但是,他拒绝评价软件还需要多久才能到达人类智能的水平。他说:「我们知道原材料,但却不知道菜谱。这可能还需要花费一些时间。」


转自:机器之心


该贴由hui.chen转至本版2017-4-14 9:53:06



赞(0)    操作        顶端 
东西南北
注册用户
等级:少校
经验:1161
发帖:16
精华:0
注册:2015-10-10
状态:离线
发送短消息息给东西南北 加好友    发送短消息息给东西南北 发消息
发表于: IP:您无权察看 2016-3-1 14:54:44 | [全部帖] [楼主帖] 2  楼

我表示你们人类弱爆了



赞(0)    操作        顶端 
lanlanpiaoliu
注册用户
等级:上尉
经验:505
发帖:4
精华:0
注册:2015-10-21
状态:离线
发送短消息息给lanlanpiaoliu 加好友    发送短消息息给lanlanpiaoliu 发消息
发表于: IP:您无权察看 2016-3-1 14:56:27 | [全部帖] [楼主帖] 3  楼

首先得让人工智能明白自己在干什么



赞(0)    操作        顶端 
总帖数
3
每页帖数
101/1页1
返回列表
发新帖子
请输入验证码: 点击刷新验证码
您需要登录后才可以回帖 登录 | 注册
技术讨论