运行HBase时常会遇到个错误,我就有这样的经历。
ERROR: org.apache.hadoop.hbase.MasterNotRunningException: Retried 7 times
检查日志:org.apache.hadoop.ipc.RPC$VersionMismatch: Protocol org.apache.hadoop.hdfs.protocol.ClientProtocol version mismatch. (client = 42, server = 41)
如果是这个错误,说明RPC协议不一致所造成的,解决方法:将hbase/lib目录下的hadoop-core的jar文件删除,将hadoop目录下的hadoop-0.20.2-core.jar拷贝
到hbase/lib下面,然后重新启动hbase即可。第二种错误是:没有启动hadoop,先启用hadoop,再启用hbase。
在Eclipse开发中,需要加入hadoop所有的jar包以及HBase二个jar包(hbase,zooKooper)。
建表,通过HBaseAdmin类中的create静态方法来创建表。
HTable类是操作表,例如,静态方法put可以插入数据,该类初始化时可以传递一个行键,静态方法getScanner()可以获得某一列上的所有数据,返回Result
类,Result类中有个静态方法getFamilyMap()可以获得以列名为key,值为value,这刚好与hadoop中map结果是一样的。
package test;
import java.io.IOException;import java.util.Map;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
public class Htable { /**
* @param args */
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
Configuration hbaseConf = HBaseConfiguration.create();
HBaseAdmin admin = new HBaseAdmin(hbaseConf);
HTableDescriptor htableDescriptor = new HTableDescriptor("table"
.getBytes()); //set the name of table
htableDescriptor.addFamily(new HColumnDescriptor("fam1")); //set the name of column clusters
admin.createTable(htableDescriptor); //create a table
HTable table = new HTable(hbaseConf, "table"); //get instance of table.
for (int i = 0; i < 3; i++) { //for is number of rows
Put putRow = new Put(("row" + i).getBytes()); //the ith row
putRow.add("fam1".getBytes(), "col1".getBytes(), "vaule1"
.getBytes()); //set the name of column and value.
putRow.add("fam1".getBytes(), "col2".getBytes(), "vaule2"
.getBytes());
putRow.add("fam1".getBytes(), "col3".getBytes(), "vaule3"
.getBytes());
table.put(putRow);
} for(Result result: table.getScanner("fam1".getBytes())){//get data of column clusters
for(Map.Entry<byte[], byte[]> entry : result.getFamilyMap("fam1".getBytes()).entrySet()){//get collection of result
String column = new String(entry.getKey());
String value = new String(entry.getValue());
System.out.println(column+","+value);
}
}
admin.disableTable("table".getBytes()); //disable the table
admin.deleteTable("table".getBytes()); //drop the tbale }
}
以上代码不难看懂。下面介绍一下,用mapreduce怎样操作HBase,主要对HBase中的数据进行读取。
现在有一些大的文件,需要存入HBase中,其思想是先把文件传到HDFS上,利用map阶段读取<key,value>对,可在reduce把这些键值对上传到HBase中。
package test;
import java.io.IOException;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MapperClass extends Mapper<LongWritable,Text,Text,Text>{
public void map(LongWritable key,Text value,Context context)thorws IOException{
String[] items = value.toString().split(" ");
String k = items[0];
String v = items[1];
context.write(new Text(k), new Text(v));
}
}
Reduce类,主要是将键值传到HBase表中
package test;
import java.io.IOException;import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.Text;
public class ReducerClass extends TableReducer<Text,Text,ImmutableBytesWritable>{
public void reduce(Text key,Iterable<Text> values,Context context){
String k = key.toString();
StringBuffer str=null;
for(Text value: values){
str.append(value.toString());
}
String v = new String(str);
Put putrow = new Put(k.getBytes());
putrow.add("fam1".getBytes(), "name".getBytes(), v.getBytes());
}
}
由上面可知ReducerClass继承TableReduce,在hadoop里面ReducerClass继承Reducer类。它的原型为:TableReducer<KeyIn,Values,KeyOut>可以看出,HBase里
面是读出的Key类型是ImmutableBytesWritable。
Map,Reduce,以及Job的配置分离,比较清晰,mahout也是采用这种构架。
package test;
import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;
public class Driver extends Configured implements Tool{
@Override public static void run(String[] arg0) throws Exception { // TODO Auto-generated method stub
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum.", "localhost");
Job job = new Job(conf,"Hbase");
job.setJarByClass(TxtHbase.class);
Path in = new Path(arg0[0]);
job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.addInputPath(job, in);
job.setMapperClass(MapperClass.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
TableMapReduceUtil.initTableReducerJob("table", ReducerClass.class, job);
job.waitForCompletion(true);
}
}
Driver中job配置的时候没有设置 job.setReduceClass(); 而是用 TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job); 来执行
reduce类。
主函数
package test;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.ToolRunner;
public class TxtHbase {
public static void main(String [] args) throws Exception{
Driver.run(new Configuration(),new THDriver(),args);
}
}
读取数据时比较简单,编写Mapper函数,读取<key,value>值就行了。
package test;
import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapred.TableMap;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
public class MapperClass extends MapReduceBase implements
TableMap<Text, Text> {
static final String NAME = "GetDataFromHbaseTest";
private Configuration conf;
public void map(ImmutableBytesWritable row, Result values,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {
StringBuilder sb = new StringBuilder();
for (Entry<byte[], byte[]> value : values.getFamilyMap(
"fam1".getBytes()).entrySet()) {
String cell = value.getValue().toString();
if (cell != null) {
sb.append(new String(value.getKey())).append(new String(cell));
}
}
output.collect(new Text(row.get()), new Text(sb.toString()));
}
要实现这个方法 initTableMapJob(String table, String columns, Class<? extends TableMap> mapper, Class<? extends org.apache.hadoop.io.WritableComparable> outputKeyClass, Class<? extends org.apache.hadoop.io.Writable> outputValueClass, org.apache.hadoop.mapred.JobConf job, boolean addDependencyJars)。
package test;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;
public class Driver extends Configured implements Tool{
@Override
public static void run(String[] arg0) throws Exception {
// TODO Auto-generated method stub
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum.", "localhost");
Job job = new Job(conf,"Hbase");
job.setJarByClass(TxtHbase.class);
job.setInputFormatClass(TextInputFormat.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
TableMapReduceUtilinitTableMapperJob("table", args0[0],MapperClass.class, job);
job.waitForCompletion(true); }
}
主函数
package test;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.ToolRunner;
public class TxtHbase {
public static void main(String [] args) throws Exception{
Driver.run(new Configuration(),new THDriver(),args);
}
}
--转自
该贴被蜀山战纪编辑于2015-12-4 9:47:54