关于CPU Cache -- 程序猿需要知道的那些事(1)_生活灌水_Weblogic技术|Tuxedo技术|中间件技术|Oracle论坛|JAVA论坛|Linux/Unix技术|hadoop论坛_联动北方技术论坛  
网站首页 | 关于我们 | 服务中心 | 经验交流 | 公司荣誉 | 成功案例 | 合作伙伴 | 联系我们 |
联动北方-国内领先的云技术服务提供商
»  游客             当前位置:  论坛首页 »  生活服务区 »  生活灌水 »
总帖数
1
每页帖数
101/1页1
返回列表
0
发起投票  发起投票 发新帖子
查看: 2877 | 回复: 0   主题: 关于CPU Cache -- 程序猿需要知道的那些事(1)        下一篇 
qq_1435287279089
注册用户
等级:上尉
经验:560
发帖:36
精华:0
注册:2015-6-26
状态:离线
发送短消息息给qq_1435287279089 加好友    发送短消息息给qq_1435287279089 发消息
发表于: IP:您无权察看 2015-9-1 11:32:34 | [全部帖] [楼主帖] 楼主

本文将介绍一些作为程序猿或者IT从业者应该知道的CPU Cache相关的知识

先来看一张本文所有概念的一个思维导图

mind_map 拷贝.jpg

为什么要有CPU Cache

随着工艺的提升最近几十年CPU的频率不断提升,而受制于制造工艺和成本限制,目前计算机的内存主要是DRAM并且在访问速度上没有质的突破。因此,CPU的处理速度和内存的访问速度差距越来越大,甚至可以达到上万倍。这种情况下传统的CPU通过FSB直连内存的方式显然就会因为内存访问的等待,导致计算资源大量闲置,降低CPU整体吞吐量。同时又由于内存数据访问的热点集中性,在CPU和内存之间用较为快速而成本较高的SDRAM做一层缓存,就显得性价比极高了。

为什么要有多级CPU Cache

随着科技发展,热点数据的体积越来越大,单纯的增加一级缓存大小的性价比已经很低了。因此,就慢慢出现了在一级缓存(L1 Cache)和内存之间又增加一层访问速度和成本都介于两者之间的二级缓存(L2 Cache)。下面是一段从What Every Programmer Should Know About Memory中摘录的解释:

Soon after the introduction of the cache the system got more complicated. The speed difference between the cache and the main memory increased again, to a point that another level of cache was added, bigger and slower than the first-level cache. Only increasing the size of the first-level cache was not an option for economical rea- sons.

此外,又由于程序指令和程序数据的行为和热点分布差异很大,因此L1 Cache也被划分成L1i (i for instruction)和L1d (d for data)两种专门用途的缓存。
下面一张图可以看出各级缓存之间的响应时间差距,以及内存到底有多慢!

latency.png

什么是Cache Line

Cache Line可以简单的理解为CPU Cache中的最小缓存单位。目前主流的CPU Cache的Cache Line大小都是64Bytes。假设我们有一个512字节的一级缓存,那么按照64B的缓存单位大小来算,这个一级缓存所能存放的缓存个数就是512/64 = 8个。具体参见下图:

cache_line 拷贝.jpg

为了更好的了解Cache Line,我们还可以在自己的电脑上做下面这个有趣的实验。

下面这段C代码,会从命令行接收一个参数作为数组的大小创建一个数量为N的int数组。并依次循环的从这个数组中进行数组内容访问,循环10亿次。最终输出数组总大小和对应总执行时间。

blob.png

如果我们把这些数据做成折线图后就会发现:总执行时间在数组大小超过64Bytes时有较为明显的拐点(当然,由于博主是在自己的Mac笔记本上测试的,会受到很多其他程序的干扰,因此会有波动)。原因是当数组小于64Bytes时数组极有可能落在一条Cache Line内,而一个元素的访问就会使得整条Cache Line被填充,因而值得后面的若干个元素受益于缓存带来的加速。而当数组大于64Bytes时,必然至少需要两条Cache Line,继而在循环访问时会出现两次Cache Line的填充,由于缓存填充的时间远高于数据访问的响应时间,因此多一次缓存填充对于总执行的影响会被放大,最终得到下图的结果:

cache_line_size2 拷贝.jpg

如果读者有兴趣的话也可以在自己的linux或者MAC上通过gcc cache_line_size.c -o cache_line_size编译,并通过./cache_line_size执行。

了解Cache Line的概念对我们程序猿有什么帮助?
我们来看下面这个C语言中常用的循环优化例子
下面两段代码中,第一段代码在C语言中总是比第二段代码的执行速度要快。具体的原因相信你仔细阅读了Cache Line的介绍后就很容易理解了。

blob.png

================================《未完~待续》=================================================================




赞(0)    操作        顶端 
总帖数
1
每页帖数
101/1页1
返回列表
发新帖子
请输入验证码: 点击刷新验证码
您需要登录后才可以回帖 登录 | 注册